
EGOI 2024 Editorial - Make Them Meet

Problem author : Hazem Issa.

The problem

You are given a graph with N vertices and M edges. There are two tokens in some of its vertices,
but you do not know in which ones. You can apply multiple operations. In one operation, you
assign an integer between 0 to N to each vertex – its color. Then each token is moved to an
adjacent vertex with the same color as its current vertex. If there is no such adjacent vertex,
the token stays in the same vertex. If there are multiple such adjacent vertices, the token could
go to any of them. Your goal is to make sure the two tokens meet at least once: they either
are in the same vertex at some point, or pass the same edge in the opposite directions at some
point. Note that they do not have to be in the same vertex after all operations are done. Your
goal is to make them meet in as few operations as possible, more specifically you get a full score
if you use at most 600 operations, while N ≤ 100.

Overall approach

How to interpret “if there are multiple such adjacent vertices, the token could go to any of
them”? This is not an interactive problem, you simply print a sequence of operations, and then
the checker will verify that your output is correct, meaning that the two tokens meet no matter
where they start and which choices they make when there are multiple options.

This means that the checker is probably implemented in the following way: it maintains a
set of pairs of positions (a, b) where the two tokens could currently be if they have not yet met,
and updates this set after every operation. In the end this set needs to be empty. This concept
will also be helpful for designing our own solution below.

Test group 1: a star

In this test group the graph is a star where everything is connected to vertex 0 and there are no
other edges.

It turns out that coloring everything with the same color is a really powerful operation for
a star: when we do it, if the tokens were in two leaves of the star, they will all gather to the
center and meet. The token from the center on the other hand will go to an arbitrary leaf. So
after this operation the set of possible pairs will be {(0, i) : i ≥ 1}.

Repeating the same operation again does not yield anything, as we will still have {(0, i) :
i ≥ 1} after it. However, we can do the following operation instead: color vertices 0 and 1
with one color, and all other vertices with their own colors. Then we get the following state:
{(1, i) : i ≥ 2}.

Now the two tokens are guaranteed to be in the leaves, so we can color everything with the
same color again and we will make them meet. So for a star just 3 operations are enough.

1



These operations will also be useful building blocks for the subsequent test groups.

Test group 3: a path

In this test group the graph is a path where vertices i and i + 1 are connected. Note that we
discuss this test group before test group 2.

Consider the following two operations. Operation even colors vertices 0 and 1 with the same
color, vertices 2 and 3 with same color (but different from 0 and 1), vertices 4 and 5 with same
color, etc. Operation odd does almost the same, but coloring vertex 0 with its own color, and
then vertices 1 and 2 with the same color, vertices 3 and 4 with the same color (but different
from 1 and 2), etc.

We will now alternate those operations: even, then odd, then even again, and so on.
Since every color is used at most twice in those operations, there is never uncertainty as to

where a token moves. Let us follow what happens to a token that starts in vertex 0. On the
first even operation it moves to vertex 1, then on the second odd operation it moves to vertex 2,
then on the third even operation it moves to vertex 3, and so on, until it reaches vertex N−1, at
which point it will stay still for one operation, and then start moving backward to vertex N −2,
then N − 3, and so on until it reaches vertex 0 again, where it will stay still for one operation,
and then start moving forward again.

A token that starts in any other vertex will follow the same path: first move forward or
backward towards one of the ends of the path, then move in the other direction to the other end
of the path, and so on.

Note that after exactly N steps a token in vertex a always moves to vertex N − 1 − a.
Therefore tokens in two different vertices a and b will swap their ordering on the path, and
therefore will have to meet. So this approach solves this test group in N operations.

This pattern will also be very useful to solve the general case.

Test group 2: a clique

In this test group any two vertices are connected with an edge.
It turns out that we can apply the solution from test group 3 without any changes (maybe

some of you got the points for this test group without expecting it?). Since the clique also
contains the path, and the solution for the path uses the same color only for pairs of vertices
connected by a path edge, the tokens would move in exactly the same way.

There are many other approaches that work for a clique, but reusing the solution for the
path can save you some time.

Test group 4: a tree

In this test group the graph is a tree.
Both a star and a path are special cases of a tree. So we likely need to come up with a

solution that reduces to the above solution for a star when the input is a star or a tree which
has vertices of high degree, and to the above solution for a path when the input is a path or
similar to it.

Here is a way to achieve this. Consider any leaf of the tree, and root the tree using it. Let
a be this leaf, and b be its only neighbor. Let us number all levels of the tree (distance from
root) starting from 0, so that vertex a has level 0 and vertex b has level 1. Then consider the
following version of even and odd operations:

2



Operation odd colors all vertices on odd levels using the same color as their parent, while for
vertices on even levels we pick distinct colors. Operation even colors all vertices on even levels
using the same color as their parent, while for vertices on odd levels we pick distinct colors.
For the root of the tree a (level 0), there is no parent so we need to define its color separately:
operation even colors it the same color as b. So the edge between a and b is activated in both
operations.

We now alternate these operations starting with operation odd, then operation even, then
operation odd again, and so on.

What happens to a token that starts somewhere in this tree? When it starts on an even
level and not at a, operation odd will move it down one level, then operation even will move it
down one more level, and so on until we reach a leaf, at which point the next operation will do
nothing, and then it will start going up one level every step until it reaches a after operation
odd, then it will go back to b after operation even, then it will go back to a after operation odd,
so it becomes trapped going back and forth on the edge between a and b after less than 2N
steps.

When a token starts on an even level, operation odd will move it up one level, then operation
even will move it up further, so it will get trapped on the edge between a and b even faster.

The most tricky case is a token that starts at a. On the first operation odd, it will go down
to b. On the second operation even, it has two choices: it can either go down, in which case it
follows the same path as any other even-level-starting token and eventually gets trapped on the
edge between a and b, or go back up to a.

So in the general case, a token starting at a can go between a and b some (even) number of
times, and then go down to the rest of the tree, then go back up, and be stuck between a and b
forever after.

Since any other token will reach the edge between a and b after less than 2N steps, if the
token starting at a still did not leave this edge by then, they will meet. And if it leaves this
edge before 2N steps complete, it will be back there in less than 4N steps and the tokens will
meet then. So the tokens are guaranteed to meet in less than 4N steps here.

In fact, a more accurate analysis can prove that they will meet in less than 2N steps, because
if the token starting at a does not meet the other token on its way down the tree, it means that
the additional time it takes this token to return to the root is taken using a path disjoint from
the path of the other token, and therefore since the total number of edges in two disjoint paths
is at most N − 1, the token starting at a will return to the root in at most 2N steps if it does
not meet the other token on the way down. But even 4N was enough for the constraints of the
problem.

Test group 5: a general graph

In this test group the graph is an arbitrary connected graph.
The first idea is, can we use the same trick we used for the path and the clique, just find

any spanning tree in the graph and use the tree solution on it? Unfortunately, things are not so
simple. Since our solution for the tree sometimes colored two vertices with the same color that
are not connected by an edge, if the graph has an edge between such vertices, then additional
movements will be possible (within a level, or between level 0 and level 2), which will break the
predictable movement pattern.

So our goal should be to find a spanning tree that is rooted using one of its leaves, and such
that there are no additional edges between the children of one parent, and no edges from the
root to level 2. The first property is easy to satisfy, for example a depth-first search tree will
never contain horizontal edges, but it is harder to make sure there are no edges from the root to

3



level 2. In fact, this is clearly impossible when the graph is a clique, but for that case we have
already described a solution above.

Let us run the depth-first search on the graph from any vertex. If the resulting depth-first
search tree is a path, we will use the path solution above, as we did for the clique. Otherwise
the depth-first search tree has at least one branching point, let us find such branching point
that there are no branching points below it, in other words that all its children are paths. Let
us denote this branching point as q, its parent as p, and its children as ri. By the depth-first
search tree properties, there are no edges between ri.

First, suppose there is at least one ri that does not have an edge to p, without loss of
generality we can assume it is r0. Let us temporarily remove the rest of the path beyond r0
from the graph (so r0 becomes a leaf in the depth-first search tree attached to q) and run a
new depth-first search starting from r0, ordering the edges in such a way that the depth-first
search first goes to q, and from q it first traverses other ri and p. This way there will be no new
children of q in this tree, and therefore the condition above will be satisfied: the root r0 is not
connected to level 2.

Note that we have removed the rest of the path beyond r0 temporarily, let us add it back
while maintaining the properties of our solution. It will form an additional path starting from
the root, let us label it with the same levels (r0 has level 0, the next vertex on the path has level
1, and so on). We update operation even to also color the vertices of level 1 and 2 on the path
with the same color, vertices of level 3 and 4 on the path with the same color, and so on. We
update operation odd to also color the vertices of level 2 and 3 on the path with the same color,
vertices of level 4 and 5 with the same color, and so on. We would also like to cover the vertices
of level 0 and 1 of the path with the same color, but that would interfere with the existing tree
construction. Therefore we introduce a new operation bridge that has just two vertices colored
with the same color: vertices of level 0 and 1 on the path.

We now repeat the three operations in sequence: odd, even, bridge, odd, even, bridge, . . . A
token in a vertex that is not on the additional path behaves as before: it either goes down, then
back up, and then keeps going between r0 and q forever, or goes directly up, and then keeps
going between r0 and q forever. A token that is on the additional path works similar to before,
but not exactly the same: it keeps traversing the additional path back and forth, and every time
it passes r0, it can either continue going back and forth on the path, or go down the rest of the
tree. If it does the latter, then it will eventually return from the tree and keep going between
r0 and q forever.

Two tokens will still meet after at most N iterations of our repeating sequence, but since
the sequence repeats three operations instead of two as before, this is guaranteed to make them
meet after at most 3N operations.

We have one case left to consider in the solution above: when all ri have an edge to p. In this
case we need to come up with one more small trick: we temporarily remove the path after r0 as
before, then start a depth-first search from r0 as before, make it consider the edge to q first as
before, and then make it consider the edges from q to ri before other edges from q. Since all ri
are connected to p, this will traverse vertex p while traversing the children of ri, and therefore
the set of children of q in the new tree will be a subset of ri only, which means that level 0 is
once again not connected to level 2, and we can proceed with the rest of the above solution.

There are many other approaches that work in this problem. Some of them might be easier
to come up with, but harder to implement or to prove.

4


