
EGOI 2024 Editorial - Garden Decorations

Problem author : Massimo Cairo

The problem

There is a sequence of N bits. You need to apply the given permutation to this sequence, but
you cannot just read and write random elements of the sequence. Instead, first you go from left
to right, and must write a new value for each element after reading its current value. Then, you
forget everything you saw (your program is restarted), and you go from right to left, and must
write a new value for each element after reading its current value. Then, you forget everything
you saw again, and go from left to right, and so on. Your goal is to apply the given permutation
correctly in at most W steps, and the lower W is, the better. To get any points, you need
W ≤ 60, and for a full score, you need W ≤ 3.

Test group 1: N = 2

In this test group there are only two possible permutations. If the permutation is the identity
permutation we just output W = 0 and terminate your program as there is nothing to do.

Else the permutation is a swap of two elements. We can solve this in 3 runs. In the first
run, we keep the first element as is (b1,0 = b0,0) and set b1,1 = b0,0 ⊕ b0,1. In the second run, we
go through the elements in reverse order. We keep the second element as is (b2,1 = b1,1) and set

b2,0 = b1,0 ⊕ b1,1 = b0,0 ⊕ b0,0 ⊕ b0,1 = b0,1.

In the third run we again process the elements from the front. We keep b3,0 = b2,0 = b0,1 and
set b3,1 = b2,0 ⊕ b2,1 = b0,1 ⊕ b0,0 ⊕ b0,1.

Test group 2: N ≤ 15

In this test group we will see how we can use the swap that we established in Test group 1 to
process a full permutation. Note that we can represent any permutation as a sequence of at
most N − 1 swaps. For every swap, we need 3 moves, and one more move to get back to start
with a forward move. This solves the problem in 4 · (N − 1) ≤ 56 moves.

Going back is actually not necessary, and we can instead start the swap in the back pass.
This gives 3 · (N − 1) ≤ 42 moves in total. You can find ideas on reducing W even further in
the solutions for test group 5.

Test group 3: Reversal

In this test group the given permutation is the reverse permutation, and therefore it consists of
many independent swaps.

1



Note that we do not have to do swaps one by one. Instead, we can apply exactly the same
computation for several independent swaps in the same three passes. Since in this test group
all swaps are independent, we can solve it this way with W = 3.

Test group 4: Shift to the right

In this test group the permutation is a cyclic shift to the right. We can generalize the approach
from test group 1 as follows.

In the first run, we set each element to the sum of this element and all previous elements:

• b1,0 = b0,0

• b1,1 = b0,0 ⊕ b0,1

• b1,2 = b0,0 ⊕ b0,1 ⊕ b0,2

• . . .

• b1,N−1 = b0,0 ⊕ b0,1 ⊕ · · · ⊕ b0,N−1

,
In the second backward run, we set each element to the sum of this element and the next

element. Most of the original terms cancel out, and we get:

• b2,N−1 = b1,N−1 = b0,0 ⊕ b0,1 ⊕ · · · ⊕ b0,N−1

• b2,N−2 = b1,N−1 ⊕ b1,N−2 = b0,N−1

• b2,N−3 = b1,N−2 ⊕ b1,N−3 = b0,N−2

• . . .

• b2,1 = b0,2

• b2,0 = b0,1

Almost all elements are already correct, we just need to add all other elements to the last
element in the third run:

• b3,0 = b2,0 = b0,1

• b3,1 = b2,1 = b0,2

• . . .

• b3,N−2 = b0,N−1

• b3,N−1 = b2,0 ⊕ b2,1 ⊕ · · · ⊕ b2,N−1 = b0,0

,

2



Test group 5: Shift to the left

In this test group the permutation is a cyclic shift to the left. We can generalize the approach
from test group 1 in a slightly different manner.

In the first run, we keep the first element unchanged, and set each subsequent element to
the sum of this element and previous element:

• b1,0 = b0,0

• b1,1 = b0,0 ⊕ b0,1

• b1,2 = b0,1 ⊕ b0,2

• . . .

• b1,N−1 = b0,N−2 ⊕ b0,N−1

,
In the second backward run, we set each element to the sum of this element and all subsequent

elements. Most of the original terms cancel out, and we get:

• b2,N−1 = b1,N−1 = b0,N−2 ⊕ b0,N−1

• b2,N−2 = b1,N−1 ⊕ b1,N−2 = b0,N−2 ⊕ b0,N−1 ⊕ b0,N−3 ⊕ b0,N−2 = b0,N−1 ⊕ b0,N−3

• b2,N−3 = b1,N−1 ⊕ b1,N−2 ⊕ b1,N−3 = b0,N−1 ⊕ b0,N−4

• . . .

• b2,1 = b0,N−1 ⊕ b0,0

• b2,0 = b0,N−1

And finally, in the third forward run, we just add the first element to all other elements to
cancel it out:

• b3,0 = b2,0 = b0,N−1

• b3,1 = b2,1 ⊕ b2,0 = b0,0

• b3,2 = b2,2 ⊕ b2,0 = b0,1

• . . .

• b3,N−1 = b0,N−2

W = 6: 90 points

In test group 3, we have managed to solve the reverse permutation with W = 3 thanks to the
fact that it consists of independent swaps. There are many more such permutations which are
also called permutations of order 2.

Moreover, it turns out that every permutation can be represented as a product of two per-
mutations of order 2! Which means that we can just apply those two permutations in order,
each using 3 passes, to obtain a solution with W = 6.

3



To prove that this is the case, it suffices to show how to represent a cycle in this manner,
since this construction can then be applied to all cycles of a permutation independently.

First, consider a cycle of even length. We start with an identity permutation (0, 1, . . . , 2k−1).
Let us swap pairs of adjacent elements first, we get: (1, 0, 3, 2, . . . , 2k − 1, 2k − 2). Now let us
swap pairs of adjacent elements, but starting with position 1, we get: (1, 3, 0, 5, 2, . . . , 2k−1, 2k−
4, 2k− 2). This permutation is one long cycle: it goes from 0 to 1, then over all odd numbers to
2k − 1, then to 2k − 2, and then back over all even numbers to 0.

Since we obtained some long cycle by applying two permutations of order 2 sequentially, we
can then obtain the cycle we need just by appropriately renumbering the elements. One can
also check that for a cycle of odd length exactly the same construction works correctly.

W = 5: 95 points

In the previous solution, we need to apply two permutations of order 2, and we know how to
apply each using 3 passes. It turns out that we can apply the last pass of the first permutation
simultaneously with the first pass of the second permutation. Indeed, if we build the 3 passes
for each permutation as forward-backward-forward, then the last pass of the first permutation
and the first pass of the second permutation are both forward passes. So we can apply both of
them at the same time by substituting the expressions needed for the first permutation into the
expressions needed for the second permutation.

This improves this solution to W = 5.

W = 3: Full solution

The full solution relies on the definition of a few parameters. For each element x ∈ [n] we write
S(x) and T (x) for the source and the target in the permutation respectively. We denote by T i(x)
the ith successor of x, to make our arguments easier, we include T 0(x) = x in this definition.
Formally

T i(x) = T (T (...T︸ ︷︷ ︸
i times

(x))).

We define Si(x) accordingly.
We then define Y (x) to be the largest element k such that the path from x to Y (x) never

goes to an element smaller than x.

Y (x) := T k(x) where k = max
j

{
T i(x) > x ∀i ∈ [0..j]

}
.

Note that if the out edge of x goes to the left (i.e. we have T (x) < x)), then we set Y (x) = x.
Similarly, we define A(x) to be the

A(x) := Sk(x) where k = max
j

{
Si(x) > x ∀i ∈ [0..j]

}
.

Again, if the in edge of x comes from the left (i.e. we have S(x) < x)), then we set A(x) = x.
Additionally, for every cycle in the permutation the smallest element in the cycle will play a

special role. We call this smallest element the zero of the cycle.

Algorithm

First forward Phase For the zeros in the cycles we set b1,x = b0,x. For every x that is not
the zero in a cycle we set b1,x = b0,x ⊕ b0,S(A(x)). Note that by the definition of A(x), we have
that S(A(x)) is guaranteed to be smaller than x and is thus available when we compute this.

4



Backward Phase We define two sequences of vertices

• P (x) = p0, p1, , ..., pℓ with p0 = T (x) and pi+1 = T (Y (pi)) while pi > x. If T (x) = x then
P = ∅. In particular that means that for pℓ we have T (Y (pℓ)) ≤ x.

• Q(x) = q0, q1, , ..., qℓ with q0 = A(x) and qi+1 = T (Y (qi)) while pi > x. If A(x) = x then
Q = ∅. In particular that means that for qℓ we have T (Y (qℓ)) ≤ x.

Note that both definitions guarantee all of the visited elements to be strictly larger than x.

1. (for all x) We set btemp = b1,x ⊕ b2,p0 ⊕ . . .⊕ b2,pℓ ,

2. (if x is the zero in a cycle) We set b2,x = btemp,

3. (if x is not the zero in a cycle) We set b2,x = btemp ⊕ b2,p0 ⊕ . . .⊕ b2,pℓ .

Second forward Phase For the zeros in the cycles we set b3,x = b2,x. For every x that is not
the zero in a cycle we set b3,x = b2,x ⊕ b3,T (Y (x)). Note that by the definition of Y (x), we have
that T (Y (x)) is guaranteed to be smaller than x and is thus available when we compute this.

Correctness

We define two parameters to keep track of the state of our algorithm. F (x) and B(x). These
two parameters will denote which two bits we are currently storing in the position x.

In the beginning we set F (x) = ∅ and B(x) = x for every element. We will do the proof for
the different phases separately.

Claim 1. After the end of the first forward phase we have F (x) = S(A(x)) and B(x) = x for
all x ̸= 0.

By construction of the first phase this is exactly what we do. By definition of A(x) we have
that S(A(x)) < x for all x ̸= 1 so we can always xor it into position x.

Claim 2. After the end of the backward phase we the following two conditions hold for every x
that is not a zero.

(C1) B(x) = Y (x),

(C2) F (x) = S(x).

Proof. We prove this claim by induction over the elements of the permutation, going from the
highest element in a cycle backwards to the lowest that is not a zero. We first show the base
case, that is that if x is the largest element in a cycle, then it is already in the desired state.

After the first forward phase we had B(x) = x. Note that as the last element does not have
any elements to the right, we clearly have that the out edge of this element goes to the left and
thus Y (x) = x which proves our statement. By the same argument, we have A(x) = x and thus
F (x) = A(S(x)) = S(x).

For the inductive step, fix some x and assume that B(x′) = Y (x′) and F (x′) = S(x′) holds
for all x′ > x. We show that this implies that the statement is also true for x in two steps. First,
we look at B(x), secondly, we consider F (x).

5



C1: B(x) = Y (x)
We look at the elements we xor into x in the first part of the backwards phase.
If P = ∅ then T (x) < x. In this case we have Y (x) = x and thus B(x) = x with no

modification satisfies condition.
Else we modify B(x). At the end of this phase we have

B(x) = x⊕ p0 ⊕ p1 ⊕ . . .⊕ pℓ

= x⊕ S(A(T (x)))︸ ︷︷ ︸
F (p0))

⊕Y (p0)︸ ︷︷ ︸
B(p0)

⊕S(T (Y (p0)))︸ ︷︷ ︸
F (p1))

⊕Y (p1)⊕ . . .⊕ S(T (Y (p0)))︸ ︷︷ ︸
F (p1))

⊕Y (pℓ)

One can observe that, by the way we decided to include the elements in our path, we have
F (pi) = B(pi−1) and F (p0) = x as T (x) > x implies A(T (x)) = T (x). This cancels out all but
the B(pℓ) = Y (pℓ) part of the chain.

We now show that Y (pℓ) = Y (x). By definition of the path, pℓ is a successor of x such that
all elements on the path between x and pℓ are larger than x. Note that as pℓ is the last vertex
on the path we know that T (Y (pℓ)) ≤ x. This gives that Y (pℓ) is the last element that can
be reached by following the permutation without crossing x, which by the definition of Y (x)
implies that Y (pℓ) = Y (x) as desired.

C2: F (x) = S(x)
The proof for F (x) is very similar to the proof for B(x). We look at the elements we xor into

x in the second part of the backwards phase. At the end of this phase we have

F (x) = S(A(x))⊕ q0 ⊕ q1 ⊕ . . .⊕ qℓ

= S(A(x))⊕ S(A(x))︸ ︷︷ ︸
F (q0))

⊕Y (q0)︸ ︷︷ ︸
B(q0)

⊕S(T (Y (q0)))︸ ︷︷ ︸
F (q1))

⊕Y (q1)⊕ . . .⊕ S(T (Y (q0)))︸ ︷︷ ︸
F (q1))

⊕Y (qℓ)

= S(A(x))⊕ F (p0)⊕B(pℓ)

First we will show F (p0) = S(A(A(x)) = S(A(x)). This follows from the fact thatA((A(x)) =
A(x) as the source of the element needs to be larger than A(x). We now show that Y (qℓ) = S(x).
By definition of the path, qℓ is a successor of A(x) such that all elements on the path between
A(x) and qℓ lie on the path between A(X) and x, which is larger than x by definition of A(x).
Note that as qℓ is the last vertex on the path we know that T (Y (qℓ)) ≤ x. As qℓ lies on the path
between A(x) and x, which lies to the right of x, the only way for an element to become smaller
than x is to pass through x. This implies T (Y (qℓ))) = x and we are done as this immediately
gives Y (qℓ) = S(x).

Claim 3. After the end of the backwards phase we have F (x) = S(x) and B(x) = ∅ for all zeros
in the permutation.

Proof. Note that for the zeros the backwards phase is slightly different. Again, we get

B(x) = x⊕ p0 ⊕ p1 ⊕ . . .⊕ pℓ

= 0⊕ S(T (0))︸ ︷︷ ︸
F (p0))

⊕Y (p0)︸ ︷︷ ︸
B(p0)

⊕S(T (Y (p0)))︸ ︷︷ ︸
F (p1))

⊕Y (p1)⊕ . . .⊕ S(T (Y (p0)))︸ ︷︷ ︸
F (p1))

⊕Y (pℓ)

= Y (pℓ)

6



So all we need to show is Y (pℓ) = S(x).
By definition, Y (pℓ) has an out edge going to the left that ends in a position i ≤ x. This

means that Y (pℓ) is the last vertex in the path of successors of x. In particular, this implies
T (Y (pℓ)) = x as x is the minimum element of the permutation appearing in this cycle and thus
Y (pℓ) = S(x) as desired.

Claim 4. After the second forward phase we have F (x) = S(x) and B(x) = ∅ for all x.

Proof. We again prove this statement by induction over the elements, this time starting from
the front. For the zeros we already have the desired state from Claim 3 so there is nothing to
prove.

For x that are not zeros in a cycle, assume that we have processed the elements up to x until
now. For all x′ < x we get by the induction hypothesis F (x′) = S(x′) and B(x′) = ∅. That
means that when we xor T (Y (x)) into x it has the value S(T (Y (x))) = Y (x). This cancels out
with B(x) and we get F (x) = S(x) and B(x) = ∅ for all x.

7


