
EGOI 2024 Editorial - Bouquet

Problem author : Jasmin Studer.

The problem

There are N tulips numbered from 0 to N−1 growing in a line along the road, in order from left
to right. The tulip protection law assigns two integers li and ri to every tulip. In case tulip i is
picked, the li tulips immediately to the left of tulip i, and the ri tulips immediately to the right
of tulip i cannot be picked. What is the maximum amount of tulips that can be picked?

Test group 1: uniform tulips

In this test group, there exists a constant c such that li = ri = c for all i, that is all the l’s and
r’s in the input have the same value.

This means that any two picked tulips must be at least c + 1 apart. Thus, we can pick at
most one tulip from every c+ 1 consecutive tulips, and we cannot do better than picking tulips
0, c+ 1, 2(c+ 1),

Therefore, the answer is ⌈ N
c+1⌉ (rounded up).

Test group 2: no constraints on the right

In this test group ri = 0 for all i.
We can adapt the solution from test group 1 in the following greedy manner: First, we pick

tulip a0 = 0. Then, we pick the next tulip a1 that can be picked according to the constraints,
in other words the smallest a1 that has la1 < a1. Then, we pick the smallest a2 such that
la2 + a1 < a2, and so on.

To prove that this is optimal, we can use the exchange argument: suppose there is an optimal
solution that does not pick a certain tulip ak from the greedy solution above. Consider the next
tulip a′k that is picked by that solution instead, by the construction of ak we have a′k > ak. We
can then replace a′k by ak in that solution and obtain another valid optimal solution. By doing
this repeatedly, we can prove that the greedy solution is optimal.

Test group 3: low N

In this test group, we need to solve the general case, but with N ≤ 1000.
The greedy strategy is no longer optimal, as can be seen from the second sample. However,

it is still true that the constraints are applied locally, on pairs of adjacent tulips. Therefore, if
we pick tulips from left to right, at every moment only the location of the last picked tulip and
the total number of picked tulips matter for the rest of the process.

1

This naturally leads to the following dynamic programming approach: we compute dpi as
maximum number of tulips that can be picked from tulips 0, 1, . . . , i in such a way that tulip i
is definitely picked.

We can use the following formula to compute dpi in increasing order of i:

dpi = max(1, max
j:j<i,max(rj ,li)<i−j

dpj + 1)

This leads to a O(N2) solution which is fast enough for this test group.

Test group 4: small li, ri

In this test group li, ri ≤ 2.
We can notice that any two picked tulips in an optimal solution cannot be 6 or more apart,

since in that case we can add another tulip in the middle without violating the constraints,
contradicting the fact that the solution is optimal.

Therefore we can only iterate over j ≥ i − 5 in the above dynamic programming solution,
which brings its running time down to O(N).

Test group 5: general case

In this test group we need to solve the general case, and N ≤ 2 · 105.
There are multiple ways to approach this problem, for example by using a segment tree to

speed up the O(N2) dynamic programming solution from test group 3.
Consider the condition that we have on j: max(rj , li) < i − j. Let us split this condition

into two: rj < i − j and li < i − j, which can be rewritten as j + rj < i and j < i − li. If we
put the array dpj into a segment tree, then we can quickly find the maximum of all dpj where
j < i− li. However, how do we deal with the additional j + rj < i constraint?

In order to do that, we need to time the updates of the segment tree properly. More precisely,
instead of storing the value of dpj into the segment tree immediately after computing it, we will
postpone it until we process i = j+rj+1. This way when we process the given i our segment tree
contains exactly the values we need and we can simply query the maximum over all j < i− li.

This solution runs in O(N logN). However, the segment tree was not really necessary to
solve this problem.

Instead of storing the values of dpj in a segment tree, we can store an array bk: the minimum
value of j such that dpj ≥ k for each k. In this case instead of querying the segment tree we can
use binary search on this array to find the last value that is less than i− li, since the array will
always be non-decreasing.

When we need to put a new value of dpj into the array (at the step i = j + rj +1), it might
seem that we need to change bk for all k from 0 to dpj . However, since when computing dpj we
have used a previous value from the array dp that is smaller by 1, actually at most one position
in the array bk needs to be changed: we simply need to do bdpj = min(bdpj , j).

This solution also runs in O(N logN) since it first sorts an array, and then does a binary
search in another array N times.

2

